Конспект урока Признаки подобия треугольников

Урок геометрии в 8 классе по теме «Признаки подобия треугольников»

Цели  урока:

Образовательные: изучить признаки подобия треугольников, отработать навыки применения их при решении задач.

Развивающие: активизация познавательной деятельности учащихся через решение практических задач, умение выбирать правильное решение, лаконично излагать свои мысли, анализировать и делать выводы.

Воспитательные: организация совместной деятельности, воспитание у учащихся интереса к предмету, доброжелательности, умения выслушивать ответы товарищей.

Ход урока.

  1. Организационный момент.

Добрый день! Добрый час!

Как я рада видеть вас.

Прозвенел уже звонок

Начинается урок.

Улыбнулись. Подровнялись.

Друг на друга поглядели

И тихонько дружно сели.

  1. Мотивация урока.

Девизом к сегодняшнему уроку будут слова древнегреческого математика Фалеса:

— Что есть больше всего на свете? – Пространство.

— Что быстрее всего? – Ум.

— Что мудрее всего? – Время.

— Что приятнее всего? – Достичь желаемого.

Хочется, чтобы каждый из вас на сегодняшнем уроке достиг желаемого результата.

Подобие двух существ того же вида, но различных размеров имеет ту же самую природу,

 как и подобие геометрических фигур.

 К.Гаусс

Любопытный отыскивает редкости только затем, чтобы им удивляться, любознательный же затем, чтобы узнать их и перестать удивляться. Так будьте же сегодня на уроке очень любознательными.

3.Актуализация знаний.

Устный опрос.

Какие виды треугольников вам известны?

Какие треугольники называются подобными?

Как составить отношение сходственных сторон подобных треугольников!

Чему равен коэффициент подобия равных треугольников?

Чему равно отношение периметров подобных треугольников?

Определение. Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.

Если треугольник ABC подобен треугольнику A1B1C1, то углы А,В и С равны соответственно углам A1,B1 и C1, AB/A1B1 =BC/B1C1 =CA/A1C1=k.

Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия.

  1. Изучение нового материала.

Ну, и, наконец, три признака подобия:

1)Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

2)Если                 две               стороны                  одного                 треугольника

пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.

3)Если                  три                стороны                   одного                  треугольника

пропорциональны     трём     сторонам     другого,     то     такие треугольники подобны

 

Найдите среди них пары подобных и докажите почему они подобны.

  1. Историческая справка. О подобии

Одинаковые по форме, но различные по величине фигуры встре­чаются в вавилонских и египетских памятниках. В сохранившей­ся погребальной камере отца фараона Рамсеса II имеется стена, покрытая сетью квадратиков, с помощью которой на стену пере­несены в увеличенном виде рисунки меньших размеров.

Пропорциональность отрезков, образующихся на прямых, пе­ресеченных несколькими параллельными прямыми, была известна еще вавилонским ученым, хотя некоторые приписывают это откры­тие Фалесу Милетскому. До наших дней сохранилась клинописная табличка, в которой речь идет о построении пропорциональных отрезков путем проведения в прямоугольном треугольнике параллелей к одному из катетов.

Учение о подобии фигур на основе теории отношений и пропорции было создано в Древней Греции в V—IV вв. до н. э. тру­дами Гиппократа Хиосского, Ар хита Тарентского, Евдокса Книдского и др. Оно изложено в VI книге «Начал» Евклида, начинающиеся следующим определением: «Подобные прямолинейные фигуры суть те, которые имеют соответственно равные углы и пропорциональные стороны».

  1. Закрепление нового материала.

Найти подобные треугольники.

Решить № 513(3), 514(1), устно № 556, 559.

Решить письменно №  564(1),

  1. Самостоятельная работа.

Решить № 564(2).

  1. Итоги урока. Рефлексия. Д/з.

Что вы узнали нового?

Чему научились?

Что показалось особенно трудным?

Геометрия — это наука точная в рассуждениях, безупречная в доказательствах, ясная в ответах, гармонично сочетающая в себе прозрачность мысли и красоту человеческого разума.

Геометрия до конца не изученная наука, и,  может быть,  многие открытия ждут именно вас!

Выучить п.12, 13, ответить на вопросы. Решить № 513(3), 514(3), 564(3).

 

 

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *